
An Epistemic Characterization of Zero Knowledge

Joseph Y. Halpern, Rafael Pass, and Vasumathi Raman
Computer Science Department

Cornell University
Ithaca, NY, 14853, U.S.A.

e-mail:{halpern, rafael, vraman}@cs.cornell.edu

March 16, 2009

Abstract

Halpern, Moses and Tuttle presented a definition of interactive proofs using a notion they called
practical knowledge, but left open the question of finding an epistemic formula that completely
characterizes zero knowledge; that is, a formula that holds iff a proof is zero knowledge. We present
such a formula, and show that it does characterize zero knowledge. Moreover, we show that variants
of the formula characterize variants of zero knowledge such asconcurrent zero knowledge[Dwork,
Naor, and Sahai 1998] andproofs of knowledge[Feige, Fiat, and Shamir 1987; Tompa and Woll
1987].

1 Introduction

The notions ofinteractive proofandzero knowledgewere introduced by Goldwasser, Micali, and Rack-
off [1989], and have been the subject of extensive research ever since. Informally, an interactive proof is
a two-party conversation in which a “prover” tries to convince a polynomial-time “verifier” of the truth
of a factϕ (whereϕ typically has the formx ∈ L, wherex is a string andL is a languageor set of
strings) through a sequence interactions. An interactive proof is said to be zero knowledge if, whenever
ϕ holds, the verifier has an algorithm to generate on its own the conversations it could have had with the
prover during an interactive proof ofϕ (according to the correct distribution of possible conversations).
Intuitively, the verifier does not learn anything from talking to the prover (other thanϕ) that it could
not have learned on its own by generating the conversations itself. Consequently, the only knowledge
gained by the verifier during an interactive proof is thatϕ is true. The notion of “knowledge” used
in zero knowledge is based on having an algorithm to generate the transcript of possible conversations
with the prover; the zero-knowledge condition places a restriction on what the verifier is able to generate
after interacting with the prover (in terms of what he could generate before). The relationship between
this ability to generate and logic-based notions of knowledge is not immediately obvious. Having a
logic-based characterization of zero knowledge would enhance our understanding and perhaps allow
us to apply model-checking tools to test whether proofs are in fact zero knowledge. However, getting
such a characterization is not easy. Since both probability and the computational power of the prover
and verifier play crucial roles in the definition of zero knowledge, it is clear that the standard notion of
knowledge (truth in all possible worlds) will not suffice.

Halpern, Moses and Tuttle [1988] (HMT from now on) were the first to study the relationship
between knowledge and being able to generate. They presented a definition of interactive proofs using
a notion they calledpractical knowledge. They proved that, with high probability, the verifier in a zero-
knowledge proof ofx ∈ L practically knows a factψ at the end of the proof iff it practically knows
x ∈ L ⇒ ψ at the beginning of the proof; they call this propertyknowledge security. Intuitively, this
captures the idea that zero knowledge proofs do not “leak” knowledge of facts other than those that
follow from x ∈ L. They also define a notion of knowing how to generate ay satisfying a relation
R(x, y), and prove that, with high probability, if the verifier in a zero-knowledge proof ofx ∈ L knows
how to generate ay satisfyingR(x, y) at the end of the proof, then he knows how to do so at the
beginning as well; they called this propertygeneration security. This captures the intuition that at the
end of a zero-knowledge proof, the verifier cannot do anything that it could not do at the beginning.

HMT left open the question of finding an epistemic formula that completely characterizes zero
knowledge; that is, a formula that holds iff a proof is zero knowledge [Goldwasser, Micali, and Rackoff
1989]. In this paper we present a strengthening of knowledge security and generation security that we
call relation hiding, which we show does characterize zero knowledge. Moreover, we show that variants
of relation hiding characterize variants of zero knowledge such asconcurrent zero knowledge[Dwork,
Naor, and Sahai 1998] andproofs of knowledge[Feige, Fiat, and Shamir 1987; Tompa and Woll 1987].

2 Background

In this section, we review the relevant background both in cryptography (interactive proof systems and
zero knowledge) and epistemic logic (specifically, modeling knowledge and probability using the runs

1

and systems framework [Fagin, Halpern, Moses, and Vardi 1995; Halpern and Tuttle 1993]). In addition,
we introduce some of the notation that will be needed for our new results.

2.1 Interactive Proof Systems

An interactive protocolis an ordered pair(P, V) of probabilistic Turing machines.P andV share a
read-only input tape; each has a private one-way, read-only random tape; each has a private work tape;
andP andV share a pair of one-way communication tapes, one fromP to V being write-only for
P and read-only forV , and the other fromV to P being write-only forV and read-only forP . An
executionof the protocol(P, V) is defined as follows. At the beginning, the input tape is initialized with
some common inputx, each random tape is initialized with an infinite sequence of random bits, each
work tape may or may not be initialized with an initial string, and the communication tapes are initially
blank. The execution then proceeds in a sequence of rounds. During any given round,V first performs
some internal computation making use of its work tape and other readable tapes, and then sends a
message toP by writing on its write-only communication tape;P then performs a similar computation.
EitherP or V may halt the interaction at any time by entering a halt state.V accepts or rejects the
interaction by entering an accepting or rejecting halt state, respectively, in which case we refer to the
resulting execution as either an accepting or rejecting execution. The running time ofP andV during
an execution of(P, V) is the number of steps taken byP andV respectively, during the execution. We
assume thatV is a probabilistic Turing machine running in time polynomial in|x|, and hence that it
can perform only probabilistic, polynomial-time computations during each round. For now we make no
assumptions about the running time ofP .

Denote by(P (s) ↔ V (t))(x) the random variable that takes two random stringsρp, ρv ∈ {0, 1}∗
as input and outputs an execution of(P, V) in which the prover’s work tape is initialized withs, the
verifier’s work tape is initialized witht, the input tape is initialized withx, andρp, ρv are the contents of
the prover and verifier’s respective random tapes. We can think ofs as the prover’s auxiliary information,
t as the verifier’s initial information, andx as the common input. LetAcceptsv[(P (s) ↔ V (t))(x)] be
the random variable that takes two infinite random stringsρp, ρv ∈ {0, 1}∞ as input, and outputs true
iff the verifier enters an accept state at the end of the execution of the protocol(P, V) whereρp andρv

are the contents of the prover and verifier’s respective random tapes, and false otherwise.

Informally, an interactive protocol(P, V) is an interactive proof system for a languageL if, when
run on inputx (and possibly some auxiliary inputss andt), after the protocol, if the prover and verifier
are both “good”—that is, the prover usesP and the verifier usesV—the verifier is almost always
convinced thatx ∈ L. Moreover, no matter what protocol the prover uses, the verifier will hardly ever
be convinced thatx ∈ L if it is not. The “almost always” and “hardly ever” are formalized in terms of
negligible functions. A functionε : N → [0, 1] is negligibleif for every positive integerk there exists an
n0 ∈ N such that for alln > n0, ε(n) < 1

nk ; that is,ε is eventually smaller than any inverse polynomial.
Finally, let PrUk

denote the uniform probability over strings in({0, 1}∞)k. For ease of notation, we
typically omit the subscriptk when it does not play a significant role or is clear from context, writing
justPrU .

Definition 1 An interactive protocol(P, V) is an interactive proof system for languageL if the follow-
ing conditions are satisfied:

• Completeness: There exists a negligible functionε such that for sufficiently large|x| and for every

2

s andt, if x ∈ L then
PrU [Acceptsv[(P (s) ↔ V (t))(x)]] ≥ 1− ε(|x|).

• Soundness: There exists a negligible functionδ such that for sufficiently large|x|, for every pro-
tocolP ∗ for the prover,s, andt, if x 6∈ L then
PrU [Acceptsv[(P ∗(s) ↔ V (t))(x)]] ≤ δ(|x|).

The completeness condition is a guarantee to both the good prover and the good verifier that if
x ∈ L, then with overwhelming probability the good prover will be able to convince the good verifier
thatx ∈ L. The soundness condition is a guarantee to the good verifier that ifx 6∈ L, then the probability
that an arbitrary (possibly malicious) prover is able to convince the good verifier thatx ∈ L is very low.
The probability here is taken over the runs of the protocol where the the verifier’s initial information is
s, the prover’s initial information ist, andx is the common input. The probability is generated by the
random coin flips of the prover and verifier (which in turn determine what happens in the run); we do
not assume a probability ons, t, orx.

2.2 Zero Knowledge

To make the notion of zero precise, we need a few preliminary definitions. We consider zero-knowledge
proofs of languagesL that have awitness relationRL, whereRL is a set of pairs(x, y) such thatx ∈ L
iff there exists ay such that(x, y) ∈ RL; letRL(x) = {y : (x, y) ∈ RL}. Note that all languages in the
complexity classNP have this property. DefineV iewv[(P (s) ↔ V (t))(x)] to be the random variable
that, on inputρp, ρv, describes the verifier’sview in the execution(P (s) ↔ V (t))(x)(ρ1, ρ2), that is,
the verifier’s initial auxiliary inputt, the sequence of messages received and read thus far by the verifier,
and the sequence of coin flips used thus far.

The intuition behind zero knowledge is that the reason the verifier learns nothing from an interaction
is that he can simulate it. The simulation is carried out by a probabilistic Turing machine. It should be
possible to carry out the simulation no matter what algorithm the verifier uses (since we hope to show
that, no matter what algorithm the verifier uses, he gains no information beyond the fact thatx ∈ L), so
we have a simulatorSV ∗ for every algorithmV ∗ of the verifier. The simulatorSV ∗ actually generates
verifier views of the conversations. Withperfect zero knowledge, the distribution of the views created by
SV ∗ given just inputsx andt (which is all the verifier sees) is identical to the actual distribution of the
verifier’s views generated by(P (s) ↔ V (t))(x). With statistical zero knowledge, the two distributions
are just required to be close. Finally, withcomputational zero knowledge, no PPT (probabilistic polyno-
mial time) algorithm can distinguish the distributions. We capture the notion of “distinguishing” here by
using a PPT distinguisherD. The distinguisher gets as input verifier views generated bySV ∗ and by the
actual conversation, and must output either 1 or 0, depending on whether it believes the view came from
SV ∗ or the actual conversation. Notice that the inputs to the simulator (x andt) are both accessible by
the verifier, so the verifier could, given his initial state and the common input, run the simulator instead
of interacting with the prover. The distinguisher tries to identify whether the verifier talked to the prover
or ran the simulator on his own. If no distinguisher is able to tell the difference, then the verifier might
as well not have interacted with the prover but run the simulator instead; we say that the interaction was
“zero-knowledge” in this case because the verifier saw nothing during the interaction that he could not
simulate.

3

We allow the distinguisher to have additional information in the form of auxiliary inputs (in addition
to the view it is trying to distinguish). This allows the distinguisher to have information that the verifier
never sees, such as information about the prover’s state, since such information could be helpful in
identifying views from the interaction and telling them apart from those produced by the verifier alone.
Allowing the distinguisher to get such auxiliary inputs strengthens the zero knowledge requirement in
that, no matter what additional information the distinguisher might have, he cannot tell apart views of
the interaction from simulated ones.

Definition 2 An interactive proof system(P, V) for L is said to becomputational zero knowledgeif,
for every PPT verifier protocolV ∗, there is a probabilistic Turing machineSV ∗ that takes as input the
common inputx and verifier’s auxiliary informationt, runs in expected time polynomial in|x|, and
outputs a view for the verifier such that for every PPT (probabilistic polynomial time) Turing machine
D that takes as input a view of the verifier and an auxiliary inputz ∈ {0, 1}∗, there exists a negligible
functionε such that for allx ∈ L, s ∈ RL(x), t ∈ {0, 1}∗, z ∈ {0, 1}∗,

|PrU [D(SV ∗(x, t), z) = 1]−
−PrU [D(V iewv[(P (s) ↔ V ∗(t))(x)], z) = 1]| ≤ ε(|x|).

2.3 The Runs and Systems Framework

Our analysis of interactive proof systems is carried out inruns and systemsframework [Fagin, Halpern,
Moses, and Vardi 1995]. The systems we consider consist of a (possibly infinite) set of communicating
agents. Agents share a global clock that starts at time0 and proceeds in discrete increments of one.
Computation in the system proceeds in rounds, roundm lasting from timem − 1 to timem. During a
round, each agent first performs some (possibly probabilistic) local computation, then sends messages
to other agents, and then receives all messages sent to him during that round. Each agents starts in
some initiallocal state; its local state then changes over time. The agent’slocal stateat timem ≥ 0
consists of the time on the global clock, the agent’s initial information (if any), the history of messages
the agent has received from other agents and read, and the history of coin flips used. Aglobal state
is a tuple of local states, one for each agent and one for the nature, which keeps track of information
about the system not known to any of the agents. We think of each agent as following a protocol that
specifies what the agent should do in every local state. An infinite execution of such a protocol (an
infinite sequence of global states) is called arun. We define asystemto be a set of such runs, often the
set of all possible runs of a particular protocol. Given a runr and a timem, we refer to(r,m) as a
point, and we say that(r,m) is a point of the systemR if r ∈ R. We denote the global state at the point
(r,m) (that is, the global state at timem in r) by r(m), and the local state of agenta in r(m) by ra(m).
Let Ka(r,m) = {(r′,m′) : ra(m) = r′a(m

′)}; Ka(r,m) can be thought of as the set of points thata
considers possible at(r,m), because he has the same local state at all of them. Since the agent’s local
state at timem consists of the time on the global clock, any point thata considers possible at(r,m) is
also at timem, soKa(r,m) = {(r′,m) : ra(m) = r′a(m)}.

In interactive proof systems, we assume that there are two agents—a proverp and a verifierv. Both
agents have a common input (typically a stringx ∈ {0, 1}∗); we denote byrc(0) the common input in
runr. We also assume that the prover and verifier agents have initial local statesrp(0) = s ∈ {0, 1}∗ and
rv(0) = t ∈ {0, 1}∗, respectively, both of which containrc(0). Additionally, we assume that nature’s
state at all timesm includes a tuple(ρr

p, ρ
r
v, ρ

r, P ∗, V ∗), whereρr
p andρr

v are the prover’s and verifier’s

4

random tapes, respectively, in runr, ρr is an additional tape whose role is explained in Section 3, andP ∗

andV ∗ are the protocols of the prover and verifier. An interactive protocol(P, V) generates a system.
The runs of the system correspond to possible executions of(P, V). Following HMT, we denote by
P × V the system consisting of all possible executions of(P, V) and byP ×Vpp the system consisting
of the union of the systemsP ×V ∗ for all probabilistic, polynomial-time (PPT) protocolsV ∗1. Ppp×V
is defined analogously. More generally, we letP × V denote the system consisting of the union of the
systemsP × V for all prover protocolsP ∈ P and verifier protocolsV ∈ V. Since we need to reason
about probability, we augment a system to get aprobabilistic system, by adding a functionPRa for
each agent that associates with each point(r,m) a probabilityPRa(r,m) on points for agenta, whose
support is contained inKa(r,m). In many cases of interest, we can think ofPRa(r,m) as arising
from conditioning an initial probability on runs on the agent’s current local state, to give a probability
on points. There are subtleties to doing this though. We often do not have a probability on the set of
all executions of a protocol. For example, as we observed in the case of interactive proofs, we do not
want to assume a probability on the auxiliary inputss andt or the common inputx. The only source of
probability is the random coin flips.

Halpern and Tuttle [1993] suggested a formalization of this intuition. Suppose that we partition
the runs ofR into cells, with a probability on each cell. For example, in the case of interactive proof
systems, we could partition the runs into setsRs,t,x, according to the inputss andt. The random coin
flips of the prover and verifier protocols then give us a well-defined probability on the runs inRs,t.
We can then definePRa(r,m) by conditioning in the following sense: Given a setS of points, let
R(S) = {r : (r,m) ∈ S for somem}. LetR(r) be the cell of the partition ofR that includesr, and
let PrR(r) be the probability on the cell. IfA is an arbitrary set of points, definePRa(r,m)(A) =
PrR(r)(R(A ∩Ka(r,m)) | R(Ka(r,m)) ∩ R(r)). (We assume for simplicity that all the relevant sets
are measurable and thatPrR(r)(R(Ka(r,m)) ∩ R(r)) 6= 0.) Note that for synchronous systems (such
as those we deal with), sinceKa(r,m) is a set of timem points, the support ofPRa(r,m) is a subset
of time m points (i.e.,PRa(r,m)(A) = 0 unlessA includes some timem points, since otherwise
A ∩ Ka(r,m) = ∅). Intuitively, we associate a set of points with the set of runs going through it,
and then define the probabilityPRa(r,m), which isa’s distribution on points at the point(r,m), by
conditioning the probability on runs defined onr’s cell on the runs going through the setKa(r,m) (i.e.
the runsa considers possible given his information at point(r,m)). A probabilistic system isstandard
if it is generated from probabilities on runs in this way.

In systems where the runs are generated by randomized algorithms, the cells are typically taken so
as to factor out all the “nonprobabilistic” or “nondeterministic” choices. In particular, we do this for the
systemP × V , so that we partition the runs into cellsRs,t, according to the inputss andt, as suggested
above, and take the probability on the runs in the cell to be determined solely by the random inputs of the
prover and verifierρv andρp and the random stringρ contained in nature’s state. Thus, we can identify
the probability onRs,t with the uniform distributionPrU3 . The probabilities on the systemP × V are
defined by the probabilities on each individual systemP × V for P ∈ P andV ∈ V; that is, we now
partition the runs of the system into cells according to the prover and verifier protocolsP, V and the
inputss andt, so there now is a separate cell for each combination ofP , V , s, andt, and the probability
PrP×V(r) can be identified with the uniform distributionPrU3 .

1Note that we distinguishp andv, the “prover” and the “verifier” agents respectively, from the protocols that they are
running. In the systemP × V , the verifier is always running the same protocolV in all runs. In the systemP × Vpp, the
verifier may be running different protocols in different runs.

5

2.4 Reasoning About Systems

To reason about systems, we assume that we have a collection of primitive facts such as “the value of
the variablex is a prime number” (wherex is the common input in the run), or “x ∈ L”, whereL
is some set of strings. Each primitive factϕ is identified with a setπ(ϕ) of points, interpreted as the
set of points at whichϕ holds. A point(r,m) in a systemR satisfiesϕ, denoted(R, r,m) |= ϕ, if
(r,m) ∈ π(ϕ). We extend this collection of primitive facts to a logical language by closing under the
usual boolean connectives, the linear temporal logic operator♦, operatorsat time m∗ for each time
m∗, the epistemic operatorsKa, one for each agenta, and probability operators of the form forprλ

a

each agenta and real numberλ. The definitions of all these operators is standard:

• (R, r,m) |= ♦ϕ iff (R, r,m′) |= ϕ for somem′ ≥ m.

• (R, r,m) |= Kaϕ iff (R, r′,m′) |= ϕ for all (r′,m′) ∈ Ka(r,m). (Intuitively, agenta knowsϕ
if ϕ is true at all the worlds that agenta considers possible.)

• (R, r,m) |= at time m∗ ϕ iff (R, r,m∗) |= ϕ.

• (R, r,m) |= prλ
a(ϕ) iff PRa(r,m)([[ϕ]]) ≥ λ, where[[ϕ]] = {(r′,m) : (R, r′,m) |= ϕ}.

We writeR |= ϕ if (R, r,m) |= ϕ for all points(r,m) in R.

3 Characterizing Zero Knowledge Using Relation Hiding

We identify “knowing something about the initial state of the system” with “being able to generate a
witness for some relation on the initial state”.

For example, if the languageL from which the common inputx is taken is the set of all Hamiltonian
graphs, then we can define a relationR such thatR(s, t, x, y) holds iff y is a Hamiltonian cycle in graph
x. (Here the relation is independent ofs andt.) Recall that a Hamiltonian cycle in a graph is a path that
goes through every vertex exactly once, and starts and ends at the same vertex; a Hamiltonian graph is a
graph with a Hamiltonian cycle. We can think of a Hamiltonian cycley as a witness to a graphx being
Hamiltonian. We allow the relationR to depend ons andt in addition tox because this allows us to
describe the possibility of the verifier learning (via the interaction) facts about the prover’s initial state
(which he does not have access to). This allows us to account for provers with auxiliary information on
their work tapes. For example,R(s, t, x, y) could be defined to hold iff the prover has Hamiltonian path
y on its work tape (in its initial states).

We are therefore interested in relationsR on S × T × L × {0, 1}∗, whereS is the set of prover
initial states andT is the set of verifier initial states. We want a formal way to capture verifier’s ability to
generate such witnesses forR. We do this by using an algorithmM that takes as input the verifier’s local
state and the common inputx, and is supposed to return ay such thatR(s, t, x, y) holds. The algorithm
M essentially “decodes” the local state into a potential witness forR. More generally, we want to
allow the decoding procedureM to depend on the protocolV ∗ of the verifier. We do this by using a
functionM : TM → TM; intuitively M(V ∗) is the decoding procedure for the verifier protocolV ∗.
To reason about this in the language, we add a primitive propositionMv,R to the language, and define
(R, r,m) |= Mv,R if R(rp(0), rv(0), rc(0),M(V ∗)(rc(0), rv(m))(ρr)) holds, whereV ∗ is the verifier

6

protocol in runr andρr is the extra random tape that is part of nature’s local state in runr; this makes
the output ofM(V ∗) in run r deterministic (althoughM is a probabilistic TM). For any constantλ,
letGM,m∗,λ

v R, read “the verifier can generate ay satisfyingR usingM with probabilityλ at timem∗”
be an abbreviation ofprλ

v (at time m∗ Mv,R). We can generalize this to a formulaGM,m∗,λ
v R which

considers functionsλ whose meaning may depend on components of the state, such as the verifier’s
protocol and the length of the common input; we leave the straightforward semantic details to the reader.
GM,m∗,λ

p R, read “the prover can generate ay satisfyingR usingM with probabilityλ at timem∗”, is
defined analogously. Finally, we add the primitive propositions ∈ RL(x) to the language, and define
(R, r,m) |= s ∈ RL(x) if rc(0) ∈ L andrp(0) ∈ RL(rc(0)).

We now show how to use the formulaGM,m∗,λ
v R to capture the intuitions underlying zero-knowledge

proofs. Intuitively, we want to say that if the verifier can generate ay satisfying a relationR after the
interaction, he could also do so before the interaction (i.e., without interacting with the prover at all).
However, this is not quite true; a verifier can learn ay satisfyingR during the course of an interaction,
but only in a negligibly small fraction of the possible conversations. We want to capture the fact that
the probability of the verifier being able to generate the witness correctly at a final point in the system is
only negligibly different from the probability he can do so at the corresponding initial point (in a perfect
zero knowledge system, the probabilities are exactly the same). Note that when the Turing machineM
used by the verifier in a particular runr generates ay, the verifier may not know whethery in fact is
a witness; that is, the verifier may not know whetherR(s, t, x, y) in fact holds. Nevertheless, we want
it to be the case that if the verifier can use some algorithmM that generates a witnessy with a certain
probability after interacting with the prover, then the verifier can generate a witnessy with the same
probability without the interaction. This lets us account for leaks in knowledge from the interaction that
the verifier may not be aware of. For example, a computationally bounded verifier may have a Hamilto-
nian cycley in graphx as part of his local state, but no way of knowing thaty is in fact a Hamiltonian
cycle. We want to say that the verifier knows how to generate a Hamiltonian cycle if this is the case
(even if he does not know that he can do so), since there is a way for the verifier to extract a Hamiltonian
cycle from his local state.

We now define relation hiding, which says that if the verifier initially knows that he can, at some
future time during the interaction with the prover, generate a witness for some relationR on the initial
state with some probability, then he knows that he can generate a witness forR at time 0, that is,
before the interaction, with almost the same probability. We allow the generating machines used by
the verifier (both after and before the interaction) to run inexpectedpolynomial time in the common
input and verifier view. Allowing them to only run in (strict) polynomial time, would certainly also
be a reasonable choice, but this would result in a notion that is stronger than the traditional notion of
zero-knowledge.2 Let EPPT be the set of all expected probabilistic polynomial time algorithms (i.e.,
algorithms for which there exists a polynomialp such that the expected running time on inputx is at
mostp(|x|)).

Definition 3 The systemR is relation hiding forL if, for every polynomial-time relationR on S ×
T × L × {0, 1}∗ and functionM : TM → EPPT , there exist functionsM′ : TM → EPPT ,
ε : TM× N → [0, 1] such that for every Turing machineV ∗, ε(V ∗, ·) is a negligible function, and for
every0 ≤ λ ≤ 1 and timem∗,

R |= at time 0 (s ∈ RL(x) ∧GM,m∗,λ
v R⇒ GM′,0,λ−ε

v R).
2In fact, it would result in a notion calledstrict polynomial-time zero knowledge[Goldreich 2001].

7

In Definition 3, we allow the meaning ofε to depend on the verifier’s protocolV ∗ since, intuitively,
different verifier protocols may result in different amounts of knowledge being leaked. If we had not
allowedε to depend on the verifier protocolV ∗, we would need a single negligible function that bounded
the “leakage” of information for all verifiers inVpp. We cannot prove that such a function exists with
the traditional definition of zero knowledge. Similarly, we must allowM′ to depend on the verifier’s
protocol, even ifM does not. Intuitively,M′ must be able to do at time 0 whatM can do at time
m∗, so it must know something about what happened between times 0 andm∗. The verifier’s protocol
serves to provide this information, since for each verifier protocolV ∗, the definition of zero knowledge
ensures the existence of a simulatorSV ∗ that can be used to mimic the interaction before timem∗. The
relation-hiding property captures the requirement that if the verifier can eventually generate an arbitrary
R, he can do so almost as well (i.e. with negligibly lower probability of correctness) initially. We now
use this property to characterize zero knowledge.

Theorem 1 The interactive proof system(P, V) for L is computational zero knowledge iff the system
P × Vpp is relation hiding forL.

Theorem 1 says that if(P, V) is a computational zero-knowledge proof system, then for any PPT
verifier and relationR, if the verifier can eventually generate a witness forR, he can do so almost as well
initially. Note that in this characterization of zero knowledge, the prover does not need to know the veri-
fier’s protocol to know that the statement holds. An intuition for the proof of Theorem 1 follows: the de-
tails (as well as all other proofs) can be found at www.cs.cornell.edu/home/halpern/papers/tark09a.pdf.

For the “if” direction, suppose that(P, V) is a computational zero knowledge system. IfV ∗ is
the verifier protocol in runr ∈ P × Vpp, then there is a simulator machineSV ∗ that produces verifier
views that no distinguisherD can distinguish from views during possible interactions with the prover,
no matter what auxiliary inputD has. We show that if the verifier has an algorithmM(V ∗) that takes
as input his view at a final point of the interaction and generates ay satisfying the relationR, then he
can generate such ay before the interaction by running the simulating machineSV ∗ at the initial point
to get a final view, and then runningM(V ∗) on this view to generatey. We can therefore construct the
functionM′ usingM andSV ∗ .

For the “only if” direction, given an arbitrary protocolV ∗, we construct a relationR such that
the verifier has an algorithm for generating witnesses forR after the interaction. SinceP × Vpp is
relation hiding forL, the verifier has an algorithm for generating witnesses forR at initial points of
the interaction. We then use this generating machine to implement a simulatorSV ∗ that fools any
distinguisher.

4 Characterizing Variants of Zero Knowledge

We can use the ideas of relation hiding to characterize variants of zero knowledge. In this section,
we show how to characterize two well-known variants: concurrent common knowledge and proofs of
knowledge.

4.1 Concurrent Zero Knowledge

So far, we have considered only single executions of an interactive proof system. However, zero-
knowledge proofs are often used in the midst of other protocols. Moreover, when this is done, several

8

zero-knowledge proofs may be going on concurrently. An adversary may be able to pass messages
between various invocations of zero-knowledge proofs to gain information. Dwork, Naor, and Sahai
[1998] presented a definition ofconcurrentzero knowledge that tries to capture the intuition that no in-
formation is leaked even in the presence of several concurrent invocations of a zero-knowledge protocol.
They consider a probabilistic polynomial-time verifier that can talk to many independent provers (all us-
ing the same protocol) concurrently. The verifier can interleave messages to and from different provers
as desired. We say that anextended verifier protocolis a protocol for the verifier where the verifier can
interact with arbitrarily many provers concurrently, rather than just one prover. (Since we are interested
in verifiers that run in polynomial time, for each extended verifier protocolV there is a polynomialqV
such that the verifier can interact with onlyqV (|x|) provers on inputx. This means that the verifier’s
view also contains messages to and from at mostqV (|x|) provers.) Denote by(P̃ (s) ↔ V (t))(x) the
random variable that takes an infinite tuple of infinite random strings((ρpi)i∈N, ρv) as input and outputs
an execution where all the provers are running protocolP with auxiliary inputs on common inputx
and the verifier is running the extended verifier protocolV with auxiliary inputt and common inputx,
proveri has the infinite stringρi on its random tape, and the verifier hasρv on its random tape.

With this background, we can define a concurrent definition of zero knowledge in exactly the same
way as zero knowledge (Definition 2), except that we now consider extended verifier protocols; we omit
the details here.

We can model a concurrent zero-knowledge system in the runs and systems framework as follows.
We now consider systems with an infinite number of agents: a verifierv and an infinite number of
proversp1, p2, All agents have common inputrc(0) in runr. As before, the provers and the verifier
have initial local states. We will be interested in systems where all the provers have the same initial
state and use the same protocol. Moreover, this will be a protocol where a prover talks only to the
verifier, so the provers do not talk to each other. This captures the fact that the verifier can now talk to
multiple provers running the same protocol, but the provers themselves cannot interact with each other
(they are independent). Again, the initial local states of the provers and the verifier all containrc(0).
Additionally, we assume that nature’s state at all timesm includes a tuple(ρr

p1
, . . . , ρr

v, ρ
r, P ∗, V ∗),

whereρr
pi

is proverpi’s random tape andρr
v is the verifier’s random tape in runr, ρr is an additional

tape as before,P ∗ is the protocol used by all the provers, andV ∗ is the verifier’s protocol. Note that
the provers’ random tapes are all independent to ensure that their actions are not correlated. Given a set
P of prover protocols andV of verifier protocols, letP̃ × V denote the system with runs of this form,
where the provers’ protocol is inP and the verifier’s protocol inV. If P = {P}, we writeP̃ × V. We
define the probability oñP ×V as before, partitioning the runs into cells according to the protocol used
and the inputs. Thus, we can identify the probability onRs,t,P,V with the uniform distributionPrU∞ .

Theorem 2 The interactive proof system(P, V) for L is computational concurrent zero knowledge iff
the system̃P × Vpp is relation hiding forL.

The proof is almost identical to that of Theorem 1.

4.2 Proofs of Knowledge

Loosely speaking, an interactive proof is a proof of knowledge if the prover not only convinces the
verifier of the validity of some statement, but also that it possesses, or can “feasibly compute”, a witness
for the statement proved (intuitively, using the secret information in its initial state). For instance, rather

9

than merely convincing the verifier that a graph is Hamiltonian, the prover convinces the verifier that
he knows a Hamiltonian cycle in the graph. We show how this notion can be formalized using our
logic. There are a number of ways of formalizing proofs of knowledge; see, for example, [Bellare and
Goldreich 1992; Feige, Fiat, and Shamir 1987; Feige and Shamir 1990; Tompa and Woll 1987]. We
give here a definition that is essentially that of Feige and Shamir [1990]. In the full paper, we discuss
modifications that give the other variants, and how to modify our characterization to handle them.

Definition 4 An interactive proof system(P, V) for a languageL with witness relationRL is aproof of
knowledgeif, for every PPT prover protocolP ∗, there exists a negligible functionε and a probabilistic
Turing machineEP ∗ that takes as input the common inputx and prover’s auxiliary informations, runs in
expected time polynomial in|x|, and outputs a candidate witness forx, such that for allx, s, t ∈ {0, 1}∗,

PrU [{Acceptsv[(P (s) ↔ V (t))(x)]}]−

PrU [{EP ∗(x, s)) ∈ RL(x)}] ≤ ε(|x|).

Intuitively, this says that for every proverP ∗, if P ∗ succeeds in convincing the verifierV thatx is inL,
then there is a “knowledge extractor” machineEP ∗ that can extract a witness forx from the prover’s
auxiliary information. We can think of the extractor as demonstrating that the prover really does know
a witness to show thatx ∈ L, given its auxiliary informations. We now formalize this definition of
proofs of knowledge using our logic. Letaccepts denote the primitive proposition that holds iff the
verifier enters an accept state at the end of the interaction.

Definition 5 The systemR is witness convincing for the languageL with witness relationRL if there
exist functionsM : TM → EPPT , ε : TM × N → [0, 1] such that, for every Turing machineP ∗,
ε(P ∗, ·) is a negligible function, and, for all0 ≤ λ ≤ 1,

R |= at time 0 prλ
p(♦accepts) ⇒ GM,0,λ−ε

p R+
L ,

where(s, t, x, y) ∈ R+
L iff y ∈ RL(x).

This definition says that there exists a functionM such thatM(P ∗) can generate ay such that(s, t, x, y) ∈
R+

L wheneverP ∗ makes the verifier accept in the systemR. This machine can be viewed as a knowledge
extractor forP ∗, motivating the following theorem.

Theorem 3 The interactive proof system(P, V) for L is a proof of knowledge iff the systemPpp×V is
witness convincing forL.

To see why this should be true, note that if(P, V) is a proof of knowledge and if the verifier accepts on
inputx when interacting withP ∗, then there exists a knowledge extractor machineEP ∗ that can gener-
ate a witnessy ∈ RL(x), and can therefore generate ay such that(s, t, x, y) ∈ R+

L . For the converse, as
we said above, the machineM(P ∗) that exists by the definition of witness convincing can be viewed as a
knowledge extractor forP ∗. Again, the details can be found at www.cs.cornell.edu/home/halpern/papers/tark09a.pdf.

The major difference between the FFS and TW difference is that, in the FFS definition, rather than
allowing a different machineEP ∗ for every prover protocolP ∗, FFS require that there be a single
knowledge extractor machineE that has oracle access to the prover’s protocol and a fixed bivariate

10

polynomialp such that the running time ofE given a proverP ∗ with runtime bounded by a polynomial
q and inputx is p(q(|x|, |x|). To capture this difference. we vary the definition of witness convincing to
require thatM(P∗) for anyP ∗ return the same machineM that takes (a description of)P ∗ as an input
and has expected runtime polynomial in the runtime ofP ∗ and|x|.

5 Conclusions and Future Work

HMT formalized the notion ofknowledge securityand showed that a zero-knowledge proof system for
x ∈ L satisfies it: the prover is guaranteed that, with high probability, if the verifier will practically
know (as defined in [Moses 1988]) a factϕ at the end of the proof, he practically knowsx ∈ L⇒ ϕ at
the start. They also formalized the notion of knowing how to generate ay satisfying any relationR(x, y)
that is BPP-testable by the verifier, and showed that zero-knowledge proofs also satisfy the analogous
property of generation security (with respect to these relations). Their work left open the question of
whether either of these notions of security characterizes zero knowledge.

We have provided a different definition of what it means for a polynomial-time agent to know how to
generate a stringy satisfying a relationR. Using this definition we provide a logical statement—called
relation hiding—that fully characterizes when an interaction is zero knowledge. We additionally show
that variants of this statement (using the same notion of knowing how to generate) characterize variants
of zero knowledge, including concurrent zero knowledge and proofs of knowledge.

Our notion of relation hiding considers the verifier’s knowledge at the beginning of a run (i.e. at time
0); it says that, at time 0, the verifier cannot know that he will be able to generate a witness for a relation
with higher probability in the future than he currently can. We would like to make the stronger claim
that the verifier willneverknow that he can generate a witness satifying the relation better than he knows
he can at the beginning (or, more accurately, will almost certainly never know this, since there is always
a negligible probability that he will learn something). To do this, we need to talk about the verifier’s
knowledge and belief at all points in the system. Consider, for example, a verifier trying to factor a
large number. We would like to allow for the fact that the verifier will, with some small probability,
get the correct answer just by guessing. However, we want to be able to say that if, after interacting
with the prover, the verifier believes that he can guess the factors with non-negligible probability then,
except with very small probability, he already believed that he could guess the factors with almost the
same probability before the interaction. Making this precise seems to require some axioms about how
a computationally-bounded verifier’s beliefs evolve. We are currently working on this, using Rantala’s
“impossible possible-worlds approach” [Rantala 1982] to capture the verifiers computational bounds.
For example, if the verifier cannot compute whether a numbern is prime, he will consider possible a
world wheren is prime and one where it is not (although one of these worlds is logically impossible).
Proving analogues of our theorem in this setting seems like an interesting challenge, which will lead to
a deeper understanding of variants of zero knowledge.

A Proofs

A.1 Computational Zero Knowledge

Theorem 1: The interactive proof system(P, V) for L is computational zero knowledge iff the system
P × Vpp is relation hiding forL.

11

Proof. For the “if” direction, suppose that(P, V) is a computational zero knowledge system and that
(P × Vpp, r, 0) |= GM,m∗,λ

v R for a polynomial-time relationR and functionsM : TM → EPPT
andλ : TM × N → [0, 1]. We want to show that there exist functionsM′ : TM → EPPT and
ε : TM × N → [0, 1] such that(P × Vpp, r, 0) |= GM′,0,λ−ε

v R. The intuition behind the proof is as
follows. If (P, V) is zero knowledge, andV ∗ is the verifier protocol in runr, then there is a simulator
machineSV ∗ that produces verifier views that no distinguisherD can distinguish from views during
possible interactions with the prover, no matter what auxiliary inputD has. We show that if the verifier
has an algorithmM(V ∗) that takes as input his view at a final point of the interaction and generates ay
satisfying the relationR, then he can generate such ay before the interaction by running the simulating
machineSV ∗ at the initial point to get a final view, and then runningM(V ∗) on this view to generatey.
We can therefore construct the functionM′ usingM andSV ∗ .

In more detail, we want to show(P ×Vpp) |= at time 0 (s ∈ RL(x)∧GM,m∗,λ
v R⇒ GM′,0,λ−ε

v R).
Thus, we must show that for all runsr, we have(P × Vpp, r, 0) |= (s ∈ RL(x) ∧ GM,m∗,λ

v R ⇒
GM′,0,λ−ε

v R). So suppose thatrc(0) ∈ L, rp(0) ∈ RL(rc(0)), and({P}× Vpp, r, 0) |= GM,m∗,λ
v R. By

definition, this means that(P×Vpp, r, 0) |= prλ
v (at time m∗ Mv,R). Assume without loss of generality

thatm∗ is greater than the final time of the interaction in all runs with inputx. (There is such anm∗,
sinceV ∗ runs in time polynomial in|x|. This assumption is made without loss of generality since we
are assuming perfect recall, so anything the verifier can do in the middle of the interaction, he can do
at the end). Construct a PPT distinguisherD as follows.D takes as input a verifier viewviewv and
extracts the verifier’s initial statet from it (since by perfect recall, the initial verifier state is contained in
any subsequent view). Recall that distinguishers can take auxiliary inputs as well as a view. In this case,
in runr we choose to giveD as auxiliary input the common inputx and the prover’s states in r. Given
x ands and a random stringρ,D runsM(V ∗) onx, viewv, andρ, whereV ∗ is the verifier’s protocol in
run r, to gety, and outputsR(s, t, x, y). SoD with inputsx, s, andρ accepts the verifier’s viewviewv

iff R(s, t, x,M(V ∗)(viewv)(ρ)) = 1 for thet contained in the verifier’s view.

Suppose that the verifier runsV ∗ in r. Since(P × Vpp, r, 0) |= prλ
v (at time m∗ Mv,R), we have

PRv(r, 0)({(r′, 0) : (P×V ∗, r′, 0) |= at time m∗ Mv,R}, r′v(0) = rv(0), r′p(0) = rp(0)}) ≥ λ(V ∗, |rc(0)|).

Recall that we can identifyPRv(r, 0) with PrU3 , so

(PrU ({r′ ∈ (P×V)(r) : (P×V ∗, r′, 0) |= at time m∗ Mv,R, r
′
v(0) = rv(0), r′p(0) = rp(0)}) ≥ λ(V ∗, |rc(0)|).

By definition ofMv,R,

PrU [{r′ ∈ (P × V)(r) : R(r′p(0), r′v(0), r′c(0),M(V ∗)(r′c(0), r′v(m
∗))) = 1}] ≥ λ(V ∗, |rc(0)|).

By definition of(P × V)(r),

PrU [R(rp(0), rv(0), rc(0),M(V ∗)(rc(0), rv(m∗))) = 1] ≥ λ(V ∗, |rc(0)|).

Thus,D with auxiliary inputsrc(0) andrp(0) accepts the verifier’s viewr(m∗) with probability at least
λ(V ∗, |rc(0)|) (where the probability is taken over the random choices ofD).

Because(P, V) is a computational zero-knowledge proof system forL, if rc(0) ∈ L andrp(0) ∈
RL(rc(0)), then there is an expected PPT Turing machineSV ∗ and a negligible functionε(V ∗) such
thatSV ∗ on inputrc(0), rv(0) outputs a verifier view such that every distinguisher, and in particular

12

the distinguisherD constructed above, accepts this view with probability at least(λ − ε)(V ∗, |rc(0)|)
(taken over the random choices ofD andSV ∗), no matter what auxiliary information we give it, and in
particular given auxiliary inputsrc(0) andrp(0). Thus, by the definition ofD, we must have

PrU [R(rp(0), rv(0), rc(0),M(V ∗)(rc(0), rv(m∗))) = 1] ≥ λ(V ∗, |rc(0)|).

DefineM′ : TM→ EPPT by takingM′(V ∗)(x, t) = M(V ∗)(x, SV ∗(x, t)). Note that this definition
suppresses the random choices ofM′(V ∗), SV ∗ andM(V ∗)—we assume that each of these machines
is given a random tape, and that the random tapes ofSV ∗ andM(V ∗) are independent, so that their
outputs are not correlated. SinceSV ∗ andM(V ∗) are both expected polynomial-time in|x| and|t|, so
is M′(V ∗). Note also that

R(rp(0), rv(0), rc(0),M′(V ∗)(rc(0), rv(0))(ρr)) = 1

iff

R(rp(0), rv(0), rc(0),M(V ∗)(rc(0), SV ∗(rc(0), rv(0))(ρr
v))(ρ

r)) = 1;

thus,

PrU [R(rp(0), rv(0), rc(0),M′(V ∗)(rc(0), rv(0))) = 1] ≥ (λ− ε)(V ∗, |rc(0)|).

SoM′(V ∗) runs in expected polynomial time and outputs a value such that

(P × Vpp, r, 0) |= prλ−ε
v (at time 0 M′

v,R).

This completes the proof of the “if” direction.

For the “only if” direction, we want to show that for every verifier protocolV ∗, there is an EPPT
algorithmSV ∗ such that for any PPT distinguisherD with any auxiliary input, there exists a negligible
functionε such that∀x ∈ L,∀s ∈ RL(x), t, z ∈ {0, 1}∗,

|PrU [{D(SV ∗(x, t), z) = 1}]− PrU [{D(V iewv[(P (s) ↔ V ∗(t))(x)], z) = 1}]| ≤ ε(|x|).

The idea behind the proof is as follows. Given an arbitrary protocolV ∗, we construct a relationR such
that the verifier has an algorithm for generating witnesses forR after the interaction. SinceP × Vpp

is relation hiding forL, the verifier has an algorithm for generating witnesses forR at initial points
of the interaction. We then use this generating machine to implement a simulatorSV ∗ that fools any
distinguisher.

Recall that the set of possible verifier initial states is the set of all bitstrings{0, 1}∗. For an arbitrary
PPT distinguisherD, define the setTD ⊆ {0, 1}∗ of verifier states of the formt = t′; 1poly(|x|);D; z; ρD,
wheret′ ∈ {0, 1}∗, x ∈ L, D is the description of the PPT distinguisher,z ∈ {0, 1}∗, ρD ∈ {0, 1}∗,
andpoly(·) is some polynomial. Define a relationR by takingR(s, t, x, y) = 1 iff t is of the form
t = t′; 1poly(|x|);D; z; ρD and the distinguisherD contained int accepts on inputy when given the
random stringρD and auxiliary inputz contained int (otherwiseR(s, t, x, y) = 0).

DefineM(V ∗) to be the trivial machine that on input(rc(0), rv(m)) outputs the verifier’s view
rv(m). Suppose that there exists a functionλ and a setA of runs such that for allr ∈ A, if m∗

r is
the final round in runr, then (P × Vpp, r, 0) |= G

M,m∗
r ,λ

v R. SinceP × Vpp is relation hiding for

13

L, there exists a functionM′ : TM → EPPT and a functionε : TM × N such thatε(V ∗) is
negligible and for allr ∈ A, (P × Vpp, r, 0) |= s ∈ RL(x) ⇒ GM′,0,λ−ε

v R. DefineSV ∗ by taking
SV ∗(x, t)(ρ) = M′(V ∗)(x, t)(ρ).

Suppose, by way of contradiction, that for some distinguisherD there is a polynomialp such that
for infinitely many

x ∈ L, s ∈ RL(x), andt ∈ {0, 1}∗, there is az ∈ {0, 1}∗ such that there exist functionsλz
1 andλz

2

(that may depend onz) such thatPrU [{D(SV ∗(x, t), z) = 1}] = λz
1(x, s, t), PrU [{D(V iewv[(P (s) ↔

V ∗(t))(x)], z) = 1}] = λz
2(x, s, t), and|λz

1(x, s, t) − λz
2(x, s, t)| > 1

p(|x|) . Consider the setTD,SV ∗ ⊆
TD of verifier states of the formt = t′; 1q(|x|);D; z; ρD, whereq is a polynomial such thatq(|x|)
is an upper bound on the running time of the verifier protocolV ∗ and the simulatorSV ∗ on input
x. The effect of this choice is that, given the verifier’s state, the verifier and simulator cannot access
the distinguisher description. Therefore,V iewv[(P (s) ↔ V ∗(t))(x)(ρp, ρv)] = V iewv[(P (s) ↔
V ∗(t′))(x)(ρp, ρv)] andSV ∗(x, t)(ρv) = SV ∗(x, t′)(ρv). If there existsz ∈ {0, 1}∗ such that the dis-
tinguisherD, given auxiliary inputz, succeeds in distinguishing the distributions{V iewv[(P (s) ↔
V ∗(t′))(x)} and{SV ∗(x, t′)}, thenD can distinguish{V iewv[(P (s) ↔ V ∗(t))(x)} and{SV ∗(x, t)}
givenz. By construction ofTD,SV ∗ , for infinitely manyx ∈ L, s ∈ RL(x) andt ∈ TD,SV ∗ , there exist
functionsλz

1 andλz
2 such thatPrU [{D(SV ∗(x, t), z) = 1}] = λz

1(x, s, t), PrU [{D(V iewv[(P (s) ↔
V ∗(t))(x)], z) = 1}] = λz

2(x, s, t), and |λz
1(x, s, t) − λz

2(x, s, t)| > 1
p(|x|) (the z referenced here is

contained int). Without loss of generality, we can assume thatλz
2(x, s, t) − λz

1(x, s, t) >
1

p(|x|) for
infinitely many of the relevantx’s, s’s, and t’s. To see that this is without loss of generality, note
that if λz

2(x, s, t) − λz
1(x, s, t) > 1

p(|x|) for only a finite number ofx’s, s’s, and t’s, then it must

be the case thatλz
1(x, s, t) − λz

2(x, s, t) >
1

p(|x|) for infinitely manyx’s, s’s, and t’s. In this case,

we can define a distinguisherD′ that outputs the opposite of whatD outputs when given the same
view and auxiliary input. Then for infinitely manyx ∈ L, s, and t, there existsz ∈ {0, 1}∗ such
thatPrU [{D′(SV ∗(x, t), z) = 1}] = λ′z1 (x, s, t), PrU [{D′(V iewv[(P (s) ↔ V ∗(t))(x)], z) = 1}] =
λ′z2 (x, s, t), andλ′z2 (x, s, t) − λ′z1 (x, s, t) > 1

p(|x|) whereλ′z1 = 1 − λz
1 andλ′z2 = 1 − λz

2. We can then

proceed with the rest of the proof using the distinguisherD′ instead ofD.

LetA denote the set of tuples(x, s, t) (with x ∈ L, s ∈ RL(x), t ∈ TD,SV ∗) for which there exists
z ∈ {0, 1}∗ and functionsλz

1, λ
z
2 such that

PrU [{D(SV ∗(x, t), z) = 1}] = λz
1(x, s, t), PrU [{D(V iewv[(P (s) ↔ V ∗(t))(x)], z) = 1}] =

λz
2(x, s, t), andλz

2(x, s, t) − λz
1(x, s, t) >

1
p(|x|) . In the systemP × Vpp, let A′ = {r ∈ P × V ∗ :

(rc(0), rp(0), rv(0)) ∈ A}. So for allr ∈ A′, PrU [{D(SV ∗(rc(0), rv(0)), z) = 1}] = λz
1(rc(0), rp(0), rv(0))

(wherez is contained inrp(0)), PrU [{D(V iewv[(P (rp(0)) ↔ V ∗(rv(0)))(rc(0))], z) = 1}] = λz
2(rc(0), rp(0), rv(0)),

andλz
2(rc(0), rp(0), rv(0))− λz

1(rc(0), rp(0), rv(0)) > 1
p(|rc(0)|) .

So for allr ∈ A′, if m∗
r is the final round in runr, then by definition ofR, M, andM′,

PrU [R(rp(0), rv(0), rc(0),M(V ∗)(rc(0), rv(m∗
r)))] = λz

2(rc(0), rp(0), rv(0)),

PrU [R(rp(0), rv(0), rc(0),M′(V ∗)(rc(0), rv(0)))] = λz
1(rc(0), rp(0), rv(0)),

and

λz
2(rc(0), rp(0), rv(0))− λz

1(rc(0), rp(0), rv(0)) >
1

p(|rc(0)|)
.

14

So for any negligible functionε(V ∗),

PrU [R(rp(0), rv(0), rc(0),M′(V ∗)(rc(0), rv(0)))] < λz
2(rc(0), rp(0), rv(0))− ε(V ∗)(|x|)

for all but finitely manyx. By definition ofprλ
a , for all r ∈ A′,

(P × Vpp, r, 0) |= prλz
2

v (at time m∗r)Mv,R

and
(P × Vpp, r, 0) 6|= prλz

2−ε
v (at time 0)M′

v,R

for any negligible functionε(V ∗). Also, by definition ofA′, (P × Vpp, r, 0) |= s ∈ RL(x), so

(P × Vpp, r, 0) |= s ∈ RL(x) ∧G
M,m∗

r ,λz
2

v R

and
(P × Vpp, r, 0) 6|= G

M′,0,λz
2−ε

v R

for any functionε : TM× N → [0, 1] such thatε(V ∗) is negligible. This gives us a contradiction.

A.2 Concurrent Zero Knowledge

Theorem 2: The interactive proof system(P, V) for L is computational concurrent zero knowledge iff
the system̃P × Vpp is relation hiding forL.

Proof. For the “if” direction, suppose that(P, V) is a computational concurrent zero knowledge system
and that(P̃×Vpp, r, 0) |= GM,m∗,λ

v R for some arbitrary polynomial-time relationR and some functions
M : TM → EPPT , λ : TM× N → [0, 1]. We want to show that there exist functionsM′ : TM →
EPPT , ε : TM× N → [0, 1] such that(P̃ × Vpp, r, 0) |= GM′,0,λ−ε

v R.

Let V ∗ be the extended verifier protocol in runr ∈ P̃ × Vpp, let x be the common input, and
let qV ∗(|x|) be an upper bound on the runtime ofV ∗ on common inputx. Recall that the verifier’s
local state at timem ≥ 0 consists of the time on the global clock, his initial informationrv(0) (which
contains the common inputrc(0)), the history of messages he has received from other agents and read,
and the history of coin flips he has used. Since the verifier’s running time is bounded byqV ∗(|rc(0)|),
no matter how many messages he receives in roundm, he can read at mostqV ∗(|rc(0)|) of them. So
his local state (and his view) at any timem ≥ 0 can contain at mostqV ∗(|rc(0)|) messages, coming
from at mostqV ∗(|rc(0)|) provers (indexed without loss of generality by1, 2, . . . , qV ∗(|rc(0)|)). So for
every runr in P̃ × Vpp, the verifier interacts with a subset ofp1, p2, . . . , pqV ∗ (|rc(0)|). By the definition
of concurrent zero knowledge, there is a simulator machineSV ∗ such thatSV ∗ produces verifier views
that are indistinguishable by any distinguisher (with any auxiliary input) from views during possible
interactions ofV ∗ with up toqV ∗(|x|) instances ofP on common input|x|. The proof thatP̃ × Vpp is
relation hiding now proceeds exactly as in Theorem 1.

For the “only if” direction, we want to show that for every verifier protocolV ∗, there is an EPPT
algorithmSV ∗ such that for any PPT distinguisherD with any auxiliary input, there exists a negligible
functionε such that∀x ∈ L,∀s ∈ RL(x), t, z ∈ {0, 1}∗,

|PrU [{D(SV ∗(x, t), z) = 1}]− PrU [{D(V iewv[(P̃ (s) ↔ V ∗(t))(x)], z) = 1}]| ≤ ε(|x|).

This proof proceeds exactly as in Theorem 1, so we omit further details here.

15

A.3 Proofs of Knowledge

Theorem 3: The interactive proof system(P, V) is a proof of knowledge knowledge iff the system
Ppp × V is witness convincing forL.

Proof. For the “if” direction of the proof, suppose that(P, V) is an interactive proof system forL that
is a proof of knowledge. It is sufficient to show that the systemP ∗ × V is witness convincing forL for
every prover protocolP ∗. By the definition of proofs of knowledge, for every prover protocolP ∗, there
is a negligible functionεP ∗ and a probabilistic Turing machineEP ∗ that takes as input the common
input x and prover’s auxiliary informations, runs in expected time polynomial in|x|, and outputs a
candidate witness forx such that for allx, s, t ∈ {0, 1}∗,

PrU [{Acceptsv[(P ∗(s) ↔ V (t))(x)]}]− PrU [{EP ∗(x, s)) ∈ RL(x)}] ≤ εP ∗(|x|).

Thus,

PrU [{Acceptsv[(P ∗(s) ↔ V (t))(x)]}]− PrU [{(s, t, x, EP ∗(x, s)) ∈ R+
L}] ≤ εP ∗(|x|), (1)

where the first probabilityPrU is taken over the random choices made by the prover and verifier proto-
cols, while the second is taken over the random choices ofEP ∗ .

DefineM : TM→ EPPT andε : TM×N → [0, 1] by takingM(P ∗) = EP ∗ andε(P ∗, ·) = εP ∗ .
Suppose that there exists some0 ≤ λ ≤ 1 and some runr such that(P ∗×{V }, r, 0) |= prλ

p(♦accepts).
Recall thatPr(P ∗×V)(r) can be identified with the uniform distributionPrU3 over triples of random
strings. SoPrU [{Acceptsv[(P ∗(rp(0)) ↔ V (rv(0)))(rc(0))]}] ≥ λ. By (1), we have

PrU [{(rp(0), rv(0), rc(0), EP ∗(rc(0), rp(0))) ∈ R+
L}] ≥ λ− ε(P ∗, |rc(0)|).

Moreover, we have(P ∗×V, r, 0) |= Kp(prλ−ε
p (at time 0 Mp,R)), and so(P ∗×V, r, 0) |= GM,0,λ−ε

p R.
This completes the “if” direction of the proof.

For the “only if” direction, let(P, V) be an interactive proof system forL such that the system
Ppp × V is witness convincing forL. Thus, there exist functionsM : TM → EPPT and ε :
TM × N → [0, 1] such that for every PPTP ∗ ∈ Ppp, ε(P ∗, ·) is a negligible function, and for every
0 ≤ λ ≤ 1,

Ppp × V |= at time 0 prλ
p(♦accepts) ⇒ GM,0,λ−ε

p R+
L . (2)

Let EP ∗ = M(P ∗) for everyP ∗ ∈ Ppp. Given a prover protocolP ∗, defineλP ∗ so that for
all x, s, t ∈ {0, 1}∗, PrU [{Acceptsv[(P ∗(s) ↔ V (t))(x)]}] = λP ∗(x, s, t). Since the probability
distributionPrPpp×V (r) onPpp × {V }(r) can be identified withPrU3 , it follows that

(Ppp × {V }, r, 0) |= prλ
p(♦accepts)

for all r ∈ P ∗ × V . By (2), for all r ∈ P ∗ × V , we have

(Ppp × {V }, r, 0) |= GM,0,λ−ε
p R+

L ;

that is,(Ppp × V, r, 0) |= Kp(prλ−ε
p (at time 0 Mp,R+

L
)). We can view(s, t, x,M(P ∗)(x, s)) ∈ R+

L

as a random variable (the probability that it is 1 is just the probability thatM(P ∗)(x, s) returns ay such

16

that(x, y) ∈ RL, taken over the random choices ofM(P ∗). SinceM(P ∗) = EP ∗ , we have that, for all
x, s, t ∈ {0, 1}∗,

PrU [{(s, t, x,M(P ∗)(x, s)) ∈ R+
L}] ≥ λP ∗(x, s, t)− ε(P ∗, |x|).

That is,

PrU [{Acceptsv[(P ∗(s) ↔ V (t))(x)]}]− PrU [{EP ∗(x, s)) ∈ RL(x)}] ≤ ε(P ∗, |x|)

for all x, s, t ∈ {0, 1}∗. It follows that(P, V) is a proof of knowledge.

Acknowledgements

The first and third authors are supported in part by NSF grants ITR-0325453, IIS-0534064, and IIS-
0812045, and by AFOSR grants FA9550-08-1-0438 and FA9550-05-1-0055. The second author is
supported in part by NSF CAREER Award CCF-0746990, AFOSR Award FA9550-08-1-0197, BSF
Grant 2006317 and I3P grant 2006CS-001-0000001-02.

References

Bellare, M. and O. Goldreich (1992). A modular approach to the design and analysis of authentication
and key exchange protocols. InProc. CRYPTO ’92, pp. 390–420.

Dwork, C., M. Naor, and A. Sahai (1998). Concurrent zero-knowledge. InProc. 30th ACM Sympo-
sium on Theory of Computing, pp. 409–418.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1995).Reasoning About Knowledge. Cambridge,
Mass.: MIT Press. A slightly revised paperback version was published in 2003.

Feige, U., A. Fiat, and A. Shamir (1987). Zero knowledge proofs of identity. InProc. 19th ACM
Symposium on Theory of Computing, pp. 210–217.

Feige, U. and A. Shamir (1990). Witness indistinguishability and witness hiding protocols. In
Proc. 31st IEEE Symposium on Foundations of Computer Science, pp. 416–426.

Goldreich, O. (2001).Foundations of Cryptography, Vol. 1. Cambridge University Press.

Goldwasser, S., S. Micali, and C. Rackoff (1989). The knowledge complexity of interactive proof
systems.SIAM Journal on Computing 18(1), 186–208.

Halpern, J. Y., Y. Moses, and M. R. Tuttle (1988). A knowledge-based analysis of zero knowledge.
In Proc. 20th ACM Symposium on Theory of Computing, pp. 132–147.

Halpern, J. Y. and M. R. Tuttle (1993). Knowledge, probability, and adversaries.Journal of the
ACM 40(4), 917–962.

Moses, Y. (1988). Resource-bounded knowledge. InProc. Second Conference on Theoretical Aspects
of Reasoning about Knowledge, pp. 261–276.

Rantala, V. (1982). Impossible worlds semantics and logical omniscience.Acta Philosophica Fen-
nica 35, 18–24.

Tompa, M. and H. Woll (1987). Random self-reducibility and zero knowledge interactive proofs of
possession of information. InProc. 28th IEEE Symposium on Foundations of Computer Science.

17

